Go top
Paper information

Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class

M. Castro, R. Cuerno, A. Sánchez, F. Dominguez-Adame

Physical Review E Vol. 57, nº. 3, pp. R2491 - R2494

Summary:

We study the interface dynamics of a discrete model previously shown [A. Sanchez, M. J. Bernal, and J. M. Riveiro, Phys. Rev. E 50, R2427 (1994)] to quantitatively describe electrochemical deposition experiments. The model allows for a finite density of biased random walkers which irreversibly stick onto a substrate. There is no surface diffusion. Extensive numerical simulations indicate that the interface dynamics is unstable at early times, but asymptotically displays the scaling of the Kardar-Parisi-Zhang universality class. During the time interval in which the surface is unstable, its power spectrum is anomalous; hence, the behaviors at length scales smaller than or comparable with the system size are described by different roughness exponents. These results are expected to apply to a wide range of electrochemical deposition experiments.


Keywords: electrochemical deposition, dendritic growth, columnar growth, surface growth, interfaces, erosion, alloys


JCR Impact Factor and WoS quartile: Q1 (1998); 2,200 - Q1 (2023)

DOI reference: DOI icon https://doi.org/10.1103/PhysRevE.57.R2491

Published on paper: March 1998.

Published on-line: March 1998.



Citation:
M. Castro, R. Cuerno, A. Sánchez, F. Dominguez-Adame, Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class. Physical Review E. Vol. 57, nº. 3, pp. R2491 - R2494, March 1998. [Online: March 1998]


pdf Preview
Request Request the document to be emailed to you.